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1 In�nite parti
le modelInitial 
onditions At time t = 0 on the real axis there is a random 
on�guration of parti
les,
onsisting of (+)-parti
les and (−)-parti
les. (+)-parti
les and (−)-parti
les di�er also by thetype: denote I+ = {1, 2, ..., K} the set of types of (+)-parti
les, and I− = {1, 2, ..., L} - the setof types of (−)-parti
les. Let

0 < x1,k = x1,k(0) < ... < xj,k = xj,k(0) < ...be the initial 
on�guration of parti
les of type k ∈ I+, and
· · · < yj,i = yj,i(0) < · · · < y1,i = y1,i(0) < 0be the initial 
on�guration of parti
les of type i ∈ I−, where the �rst index is the number of theparti
le in the 
on�guration, the se
ond index is its type. Thus all (+)-parti
les are situated on

R+ and all (−)-parti
les on R−. Distan
es between neighbor parti
les of the same type denoteby
xj,k − xj−1,k = u

(+)
j,k , k ∈ I+, j = 1, 2, ...

yj−1,i − yj,i = u
(−)
j,i , i ∈ I−, j = 1, 2, ...where we put x0,k = y0,i = 0. The random 
on�gurations 
orresponding to the parti
les of dif-ferent types are assumed to be independent. The random distan
es between neighbor parti
lesof the same type are also assumed to be independent, and moreover identi
ally distributed,that is random variables u

(−)
j,i , u

(+)
j,k are independent and their distribution depends only on theupper and se
ond lower indi
es. Our te
hni
al assumption is that all these distribution areabsolutely 
ontinuous and have �nite means. Denote µ

(−)
i = Eu

(−)
j,i , ρ

(−)
i =

(

µ
(−)
i

)−1

, i ∈ I− ,
µ

(+)
k = Eu

(+)
j,k , ρ

(+)
k =

(

µ
(+)
k

)−1

, k ∈ I+.Dynami
s We assume that all (+)-parti
les of the type k ∈ I+ move in the left dire
tionwith the same 
onstant speed v
(+)
k , where v

(+)
1 < v

(+)
2 < ... < v

(+)
K < 0. The (−)-parti
les oftype i ∈ I− move in the right dire
tion with the same 
onstant speed v

(−)
i , where v

(−)
1 > v

(−)
2 >

... > v
(−)
L > 0. If at some time t a (+)-parti
le and a (−)-parti
le are at the same point (we
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all this a 
ollision or annihilation event), then both disappear. Collisions between parti
les ofdi�erent types is the only intera
tion, otherwise they do not see ea
h other. Thus, for example,at time t the j−th parti
le of type k ∈ I+ 
ould be at the point
xj,k(t) = xj,k + v

(+)
k tif it will not 
ollide with some (−)-parti
le before time t.We de�ne the boundary β(t) between plus and minus phases to be the 
oordinate of the last
ollision whi
h o

ured at some time t′ ≤ t. For t = 0 we put β(0) = 0. Thus the traje
toriesof the random pro
ess β(t) are pie
ewise 
onstant fun
tions, we shall assume them 
ontinuousfrom the left. We shall prove the a.e. existen
e of the limit

W = lim
t→∞

β(t)

t
(1)whi
h we 
all the asymptoti
al speed of the boundary. However our main goal is expli
it
al
ulation of W .Result For any pair (J−, J+) of subsets , J− ⊆ I−, J+ ⊆ I+, de�ne the number

V (J−, J+) =

∑

i∈J
−

v
(−)
i ρ

(−)
i +

∑

k∈J+
v

(+)
k ρ

(+)
k

∑

i∈J
−

ρ
(−)
i +

∑

k∈J+
ρ

(+)
k

, V (I−, I+) = VThe following 
ondition is assumed
{V (J−, J+) : J− 6= ∅, J+ 6= ∅ } ∩ {v

(−)
1 , ..., v

(−)
L , v

(+)
1 , ..., v

(+)
K } = ∅ . (2)If the limit W = lim

t→∞

β(t)

t
exists a.e., we 
all it the asymptoti
 speed of the boundary.Theorem 1 The asymptoti
 velo
ity of the boundary exists and is equal to

W = V ({1, ..., L1}, {1, ..., K1})where
L1 = arg max

l∈I
−

V ({1, ..., l}, I+) = max
{

l ∈ {1, . . . , L} : v
(−)
l > V ({1, ..., l}, I+)

}

,

K1 = arg min
k∈I+

V (I−, {1, ..., k}) = max
{

k ∈ {1, . . . , K} : v
(+)
k < V (I−, {1, ..., k})

}

.Now we will explain this result in more detail. It is always true that v
(+)
K < 0 < v

(−)
L andthere 
an be 3 possible ordering of the numbers v

(−)
L , v

(+)
K , V :1. v

(+)
K < V < v

(−)
L . In this 
ase

K1 = K, L1 = L, W = V2. If v
(+)
K > V then V < 0 and K1 < K, L1 = L. Moreover

W = V ({1, ..., L}, {1, ..., K1}) = min
k∈I+

V ({1, ..., L}, {1, ..., k}) < V < 03. If v
(−)
L < V then V > 0 and K1 = K, L1 < L. Moreover

W = V ({1, ..., L1}, I+) = max
l∈I

−

V ({1, ..., l}, I+) > V > 02



2 Random walks in RN
+One 
an 
onsider the phase boundary as a spe
ial kind of server where the 
ustomers (parti
les)arrive in pairs of the same type and are immediately served. However the situation is moreinvolved, than in standard queueing theory, be
ause the server moves, and 
orrelation betweenbetween its movement and arrivals is su�
ently 
ompli
ated. That is why this analogy doesnot help mu
h. However we des
ribe the 
ru
ial 
orresponden
e between random walks in RN

+and the in�nite parti
le problem de�ned above whi
h allows to get the solution.Denote b
(−)
i (t) (b(+)

k (t)) the 
oordinate of the extreme right (left), and still existing at time t,that is not annihilated at some time t′ ≤ t, (−)-parti
le of type i ∈ I− ((+)-parti
le of type
k ∈ I+). De�ne the distan
es di,k(t) = b

(+)
k (t) − b

(−)
i (t) ≥ 0, i ∈ I−, k ∈ I+. The traje
toriesof the random pro
esses b

(−)
i (t), b

(+)
k (t), di,k(t) are assumed left 
ontinuous, for any indi
es.Consider the random pro
ess D(t) = (di,k(t), (i, k) ∈ I) ∈ RN

+ , where N = KL. D(t) is aMarkov pro
ess, due to our assumptions 
on
erning initial distribution.Denote D ∈ RN
+ the state spa
e of D(t). Note that the distan
es di,k(t), for any t, satisfythe following 
onservation laws

di,k(t) + dn,m(t) = di,m(t) + dn,k(t)where i 6= n and k 6= m. That is why the state spa
e D 
an be given as the set of non-negativesolutions of the system of (L − 1)(K − 1) linear equations
d1,1 + dn,m = d1,m + dn,1where n, m 6= 1. It follows that the dimension of D equals K + L− 1. However it is 
onvenientto speak about random walk in RN

+ , taking into a

ount that only subset of dimension K+L−1is visited by the random walk.Now we des
ribe the traje
tories D(t) in more detail. The 
oordinates di,k(t) de
reaselinearly with the speeds v
(−)
i −v

(+)
k 
orrespondingly until one of the 
oordinates di,k(t) be
omeszero. Let di,k(t0) = 0 at some time t0. This means that (−)-parti
le of type i 
ollided with

(+)-parti
le of type k. Let them have numbers j and l 
orrespondingly. Then the 
omponentsof D(t) be
ome:
di,k(t0 + 0) = u

(−)
j+1,i + u

(+)
l+1,k

di,m(t0 + 0) − di,m(t0) = u
(−)
j+1,i, m 6= k

dn,k(t0 + 0) − dn,k(t0) = u
(+)
l+1,k, n 6= iand other 
omponents will not 
hange at all, that is do not have jumps. Shortly, it 
an besummarized as follows. Let di,k(t0) = 0, then for any n, m

dn,m(t0 + 0) − dn,m(t0) = δ(n, i)u
(−)
j+1,i + δ(m, k)u

(+)
l+1,kwhere δ(n, i) = 1 for n = i and δ(n, i) = 0 for n 6= i. Note that the in
rements of the 
oordinates

dn,m(t0 + 0) − dn,m(t0) at the jump time do not depend on the history of the pro
ess beforetime t0, as the random variables. u
(−)
j,i (u(+)

j,k ) are independent and equally distributed for �xedtype. Markov property follows from this.Note however that this 
ontinuous time Markov pro
ess has singular transition probabilities(due to partly deterministi
 movement). This fa
t however does not prevent us from using3



the te
hniques from [1℄ where random walks in ZN
+ were 
onsidered. Absolute 
ontinuity ofthe distributions of random variables u

(−)
j,i ,u(+)

j,k garanties that the events when more than one
oordinate of D(t) be
ome zero, have zero probability.We 
all the pro
ess D(t) ergodi
, if there exists a neighborhoodA of zero, su
h that the meanvalue Eτx of the �rst hitting time τx of A from the point x is �nite for any x ∈ D. In our 
ontextwe 
all the pro
ess D(t) transient if it goes to in�nity with probability 1. Condition (2), whi
hex
ludes the set of parameters of zero measure, ex
ludes null re
urrent 
ases and 
ompli
atedbehavior of 
onsidered random walk as well.Any 
ollision of parti
les of the types i ∈ I−, k ∈ I+ is 
alled a 
ollision of type (i, k). Denote
νi,k(T ) = #{t : di,k(t) = 0, t ∈ [0, T ]}-that is the number of 
ollisions of type (i, k) on the time interval [0, T ]. One 
an 
al
ulate theasymptoti
s of these numbers due to the following lemma.Lemma 1 If the pro
ess D(t) is ergodi
, then the following positive limits exist a.s.
πi,k = lim

T→∞

νi,k(T )

T
> 0, (i, k) ∈ Iand satisfy the following system of linear equations

v
(−)
i − v

(+)
k =

∑

(n,m)∈I
−
×I+

(δ(n, i)µ
(−)
i + δ(m, k)µ

(+)
k )πn,m, (i, k) ∈ I (3)In the ergodi
 
ase the 
orresponden
e between boundary movement and random walks is
ompletely des
ribed by the following theorem.Theorem 2 Two following two 
onditions are equivalent:1) The pro
ess D(t) is ergodi
; 2) v

(−)
L > V and v

(+)
K < V .All other 
ases of boundary movement 
orresponds to non-ergodi
 random walks. To un-derstand the 
orresponding random walk dynami
s introdu
e a new family of pro
esses.Indu
ed pro
ess Let |J−| + |J+| families of random variables be given

{

θ
(−)
s,i , s ∈ R+

}

, (i ∈ J−),
{

θ
(+)
s,k , s ∈ R+

}

, (k ∈ J+). (4)We assume that for any i ∈ I− the random variables {

θ
(−)
s,i , s ∈ R+

} are i.i.d., similarly for
{

θ
(+)
s,k , s ∈ R+

}, and all families (4) are independent of ea
h other.De�ne some auxiliary random pro
ess ξΠ(t) =
(

ξΠ
i,k(t), (i, k) ∈ Π

) with state spa
e R
|Π|
+ andleft 
ontinuous traje
tories, here Π = J− × J+ = {(i, k) : ...} ⊂ I− × I+:1) if ξΠ

i,k(t) > 0 for any (i, k) ∈ Π, then
d

dt
ξΠ
i,k(t) = v

(+)
k − v

(−)
i < 0 , ∀(i, k) ∈ Π, (5)2) if at some time moment s0 the 
oordinate (i0, k0) be
omes zero, that is ξΠ

i0,k0
(s0) = 0,then the 
oordinates have jumps as follows:

ξΠ
n,m(s0 + 0) − ξΠ

n,m(s0) = δ(n, i0)θ
(−)
s0,i0

+ δ(m, k0)θ
(+)
s0,k0

, ∀(n, m) ∈ Π (6)4



It is 
lear that ξΠ(t) is a Markov pro
ess. In R|Π| de�ne the linear subspa
e D(R|Π|) ofdimension |J−| + |J+| − 1, by the following system of equations
zi,k + zn,m = zi,m + zn,k, i 6= n, k 6= m.In this system only (|J−| − 1)(|J+| − 1) equations are linearly independent. In fa
t, �x somepair (i0, k0) ∈ Π. As

zn,m = zi0,m + zn,k0
− zi0,k0

,then any variable 
an be expressed with |J−| + |J+| − 1 variables zi0,k0
, zi0,m and zn,k0

, n 6= i0,
m 6= k0.Note that if ξΠ(0) ∈ D(R|Π|), then for any t > 0 ξΠ(t) ∈ D(R|Π|).Relation with the pro
ess D(t). Let Π = I− × I+ and assume that θ

(−)
s,i have thesame distributions as u

(−)
j,i , and θ

(+)
s,k - as u

(+)
j,k . Then it is easy to see that Markov pro
esses

D(t) = (di,k(t), (i, k) ∈ I− × I+) and ξI
−
×I+(t) have the same transition kernels.Let Π = J− × J+ ( I− × I+. Consider the restri
tion D

∣

∣

∣

Π
(t) = (di,k(t), (i, k) ∈ Π) of thepro
ess D(t) = (di,k(t), (i, k) ∈ I− × I+) on Π. Then this pro
ess does not 
oin
ide with ξΠ(t),starting with ξΠ(0) = D

∣

∣

∣

Π
(0), but even will not be a Markov pro
ess. In fa
t D

∣

∣

∣

Π
(t) has jumpsat time moments when one of the 
oordinates (i, k) ∈ I− × I+ be
omes zero. And ξΠ(t) jumpsonly when be
omes zero one of the 
oordinates from Π. However, if the initial point D(0)is su
h that ea
h di,k(0), (i, k) ∈ I− × I+\Π is su�
iently large, then during some time thepro
esses D

∣

∣

∣

Π
(t) and ξΠ(t) 
oin
ide. Thus one 
an say that ξΠ(t) is the �proje
tion� of D(t)far away from the origin. This is quite similar to the notion of the indu
ed pro
ess in [1℄.Let Λ ⊆ I = I− × I+. The fa
e of RN

+ asso
iated with Λ is de�ned as
B(Λ) = {x ∈ RN

+ : xi,k > 0, (i, k) ∈ Λ, xi,k = 0, (i, k) ∈ Λ} ⊆ RN
+If Λ = ∅, then B(Λ) = {0}. For shortness, instead of B(Λ) we will write Λ.Consider the fa
es Λ su
h that Λ = J− × J+where J− ⊆ I−è J+ ⊆ I+. The pro
ess ξΛ(t)will be 
alled an indu
ed pro
ess, asso
iated with Λ. Further on we shall use the notation

DΛ(t) = (dΛ
i,k(t), (i, k) ∈ Λ) instead of ξΛ(t). The state spa
e of this pro
ess is DΛ = D(R|Λ|),where |Λ| = |J−| × |J+|.Fa
e Λ is 
alled ergodi
 if the indu
ed pro
ess DΛ(t) is ergodi
.Denote

νΛ
i,k(T ) = #{t : dΛ

i,k(t) = 0, t ∈ [0, T ]}, (i, k) ∈ ΛLemma 2 If the pro
ess DΛ(t) is ergodi
 then the following a.e. limits exist and are positivefor all pairs (i, k) ∈ Λ

πΛ
i,k = lim

T→∞

νΛ
i,k(T )

T
> 0 (7)They satisfy the following system of linear equations

v
(−)
i − v

(+)
k =

∑

(n,m)∈Λ

(δ(n, i)µ
(−)
i + δ(m, k)µ

(+)
k )πΛ

n,m, (i, k) ∈ Λ (8)Let Λ = J− × J+ = {il, ..., i1} × {k1, ..., km}, where il > ... > i1 and k1 < ... < km, and let Λbe an ergodi
 fa
e. Put V Λ = V (J−, J+). Then5



1) v
(−)
il

> V Λ and v
(+)
km

< V Λ2) The boundary velo
ity for the indu
ed pro
ess equals (with the a.e. limit)
lim
t→∞

βΛ(t)

t
= V ΛNote that V Λ = V for Λ = ∅.Indu
ed ve
tors For any ergodi
 fa
e Λ (Λ = J−×J+) we de�ne the indu
ed ve
tor vΛ ∈ RNwith the 
oordinates equal to

vΛ
i,k = −v

(−)
i + v

(+)
k + 1(i ∈ J−)µ

(−)
i π

(Λ,−)
i + 1(k ∈ J+)µ

(+)
k π

(Λ,+)
kwhere we introdu
e the following notation

π
(Λ,−)
i =

∑

k∈J+

πΛ
i,k, i ∈ J−; π

(Λ,+)
k =

∑

i∈J
−

πΛ
i,k, k ∈ J+ .By (8) we have vΛ

i,k = 0 for (i, k) ∈ Λ, that is the indu
ed ve
tor belongs to the fa
e Λ.The following lemma explains the meaning of the indu
ed ve
tor.Lemma 3 1) The indu
ed ve
tor for the ergodi
 fa
e Λ belongs to D ∩ Λ and its 
oordinatesare given by
vΛ

i,k = −v
(−)
i + V Λ, (i, k) ∈ Λ, i /∈ J−, k ∈ J+

vΛ
i,k = v

(+)
k − V Λ, (i, k) ∈ Λ, i ∈ J−, k /∈ J+

vΛ
i,k = −v

(−)
i + v

(+)
k , (i, k) ∈ Λ, i /∈ J−, k /∈ J+

vΛ
i,k = 0, (i, k) ∈ Λ2) Let Λ be ergodi
 and Dy(t) be the Markov pro
ess D(t) with initial point y, that is D(0) = y.Then for any y ∈ B(Λ) è t ≥ 0, so that y + vΛt ∈ B(Λ), we have

DyN (tN)

N
→ y + vΛta.e. as N → ∞.It follows from 
ondition (2) that for ea
h ergodi
 fa
e Λ 
oordinates of the 
orrespondingindu
ed ve
tor vΛ

i,k 6= 0 for all (i, k) ∈ Λ.Non-ergodi
 fa
es Let Λ be the fa
e whi
h is not ergodi
 (non-ergodi
 fa
e). Ergodi
 fa
e
Λ1: Λ1 ⊃ Λ will be 
alled outgoing for Λ, if vΛ1

i,k > 0 for (i, k) ∈ Λ1 \ Λ.Let E(Λ) be the set of outgoing fa
es for the non-ergodi
 fa
e Λ.Lemma 4 The set E(Λ) 
ontains the minimal element Λ1 in the sense that for any Λ2 ∈ E(Λ)we have Λ2 ⊇ Λ1.

6



Dynami
al system For any ergodi
 fa
e Λ we de�ned the indu
ed ve
tor vΛ, and for anynon-ergodi
 fa
e Λ we de�ned the ve
tor vΛ1 , where Λ1 is the minimal element of E(Λ). Thus,we de�ned the ve
tor �eld in D ∩ RN
+ . Let Ttx be the dynami
al system 
orresponding to thisve
tor �eld.We 
all the ergodi
 fa
e Λ = L �nal, if either L = ∅ or all 
oordinates of the indu
ed ve
tor

vL are positive. The 
entral statement is that the dynami
al system hits the �nal fa
e, stayson it forever and goes along it to in�nity.The following theorem, together with theorem 2, is parallel to Theorem 1 and, in all 3 
asesof Theorem 1, they exhibit the properties of the 
orresponding random walks in the orthant.Theorem 31. Assume
v

(+)
K > VThen the pro
ess D(t) is transient and there exists a unique ergodi
 �nal fa
e L1, su
hthat vL1

i,k > 0 for (i, k) ∈ L1. This fa
e is
L1(L, K1) = {(i, k) : i = 1, ..., L, k = K1 + 1, ..., K}2. Assume

v
(−)
L < VThen the pro
ess D(t) is transient and there exists a unique ergodi
 �nal fa
e L2, su
hthat vL2

i,k > 0 for (i, k) ∈ L2. This fa
e is
L2(L1, K) = {(i, k) : i = L1 + 1, ..., L, k = 1, ..., K}Fa
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