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1 Infinite particle model

Initial conditions At time ¢t = 0 on the real axis there is a random configuration of particles,
consisting of (4)-particles and (—)-particles. (+)-particles and (—)-particles differ also by the
type: denote I, = {1,2,..., K'} the set of types of (4)-particles, and I_ = {1,2,..., L} - the set
of types of (—)-particles. Let

0< T1k = .TL]{(O) < ... < Zjr= .Tj7k(0) < ...
be the initial configuration of particles of type k € I, and
s <y = Y54(0) < <y = 41,4(0) <0

be the initial configuration of particles of type ¢ € I_, where the first index is the number of the
particle in the configuration, the second index is its type. Thus all (4)-particles are situated on
R, and all (—)-particles on R_. Distances between neighbor particles of the same type denote
by

Tjk — Tj—1,k = ’LLS;), kel,, j=12 ..

Yi-14 — Yji = ulD, e I, j=12 .

j7i ’
where we put 2o = yo, = 0. The random configurations corresponding to the particles of dif-

ferent types are assumed to be independent. The random distances between neighbor particles

of the same type are also assumed to be independent, and moreover identically distributed,
that is random variables ug-;-), uﬁ) are independent and their distribution depends only on the
upper and second lower indices. Our technical assumption is that all these distribution are
-1
absolutely continuous and have finite means. Denote u!™) = Eu;—i), pg_) = < E_)) el

i

1
i = B, ol = () ke,

Dynamics We assume that all (+)-particles of the type &k € I, move in the left direction
with the same constant speed v,(j), where v§+) < v§+) <. < v%’) < 0. The (—)-particles of
type ¢ € I_ move in the right direction with the same constant speed vf_), where v§_) > ol >
.. > v > 0. If at some time ¢ a (+)-particle and a (—)-particle are at the same point (we
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call this a collision or annihilation event), then both disappear. Collisions between particles of
different types is the only interaction, otherwise they do not see each other. Thus, for example,
at time ¢ the j—th particle of type k& € I, could be at the point

Ij7k(t) =Tk + U](j)t
if it will not collide with some (—)-particle before time t.

We define the boundary (3(t) between plus and minus phases to be the coordinate of the last
collision which occured at some time ¢’ < t. For t = 0 we put 5(0) = 0. Thus the trajectories
of the random process ((t) are piecewise constant functions, we shall assume them continuous
from the left. We shall prove the a.e. existence of the limit

t
W = lim —6( ) (1)

t—oo ¢

which we call the asymptotical speed of the boundary. However our main goal is explicit
calculation of W.

Result For any pair (J_, J,) of subsets , J_ C I, J, C I, define the number

(=) (=) (+) ()
Doics Vi P D hes, Vi Py

V(J_,Jy) = — , V(I_,I,)=V
Dier Pz( = Zk€J+ pl(j)
The following condition is assumed
VI, Jy) : J_#2, ], £} N {vf), ...,Uéi),vfr), ...,vg)} =0. (2)

p(t)

If the limit W = tlim 4 exists a.e., we call it the asymptotic speed of the boundary.

Theorem 1 The asymptotic velocity of the boundary exists and is equal to
W =V({1,.., Li},{1,.., Ki})
where

Ly = argmax V({1,...,0},I,) = max{l e{l,....L}: v > V({1 ...,1},1+)},

lel-

Ky = argmin V(I_, {1,...k}) = max{k e{l,....K}: oY < V(I {1, ...,k})}.

kely

Now we will explain this result in more detail. It is always true that vgj) <0<w
there can be 3 possible ordering of the numbers v(_), vgj), V.

)

(=) and

. In this case

KlzK, L1:L, W=V

1. vgj) <V<U(L_

2. If ') > V then V < 0 and K; < K, Ly = L. Moreover
W= V{1, L} {1 K} = min VL o AL B} < V< 0
€l

3. If ol <V then V>0and Ky = K, Ly < L. Moreover
W= V{1 L} 1) = max V({1 0}, 1) > V >0
cl_



2 Random walks in RY

One can consider the phase boundary as a special kind of server where the customers (particles)
arrive in pairs of the same type and are immediately served. However the situation is more
involved, than in standard queueing theory, because the server moves, and correlation between
between its movement and arrivals is sufficently complicated. That is why this analogy does
not help much. However we describe the crucial correspondence between random walks in Rf
and the infinite particle problem defined above which allows to get the solution.

Denote b\ (t) (b,(:r)(t)) the coordinate of the extreme right (left), and still existing at time ¢,
that is not annihilated at some time ¢’ < ¢, (—)-particle of type i € I_ ((+)-particle of type
k € I,). Define the distances d; ;(t) = b,(j) (t) — bl(-f)(t) > 0,4 € I_,k € I,. The trajectories
of the random processes bg_)(t), b,(j)(t), d; (t) are assumed left continuous, for any indices.
Consider the random process D(t) = (d;x(t), (i,k) € I) € RY, where N = KL. D(t) is a
Markov process, due to our assumptions concerning initial distribution.

Denote D € RY the state space of D(t). Note that the distances d;;(t), for any ¢, satisfy
the following conservation laws

di k() + dpn(t) = dim(t) + dp i (1)

where ¢ # n and k£ # m. That is why the state space D can be given as the set of non-negative
solutions of the system of (L — 1)(K — 1) linear equations

dl,l + dn,m - dl,m + dn,l

where n,m # 1. It follows that the dimension of D equals K + L — 1. However it is convenient
to speak about random walk in Rf , taking into account that only subset of dimension K+ L —1
is visited by the random walk.

Now we describe the trajectories D(t) in more detail. The coordinates d;x(t) decrease
linearly with the speeds vi(*) — v,(j) correspondingly until one of the coordinates d; ;(t) becomes
zero. Let d; ;(t9) = 0 at some time ;. This means that (—)-particle of type i collided with
(4)-particle of type k. Let them have numbers j and [ correspondingly. Then the components
of D(t) become:

(+)

dik(to+0) = ugl)u Uk

to) = Uﬁ)m m#k

to) = “l(ﬂkv n#i

and other components will not change at all, that is do not have jumps. Shortly, it can be
summarized as follows. Let d; ;(to) = 0, then for any n,m
i (to + 0) = dnm(to) = 0(n, Z)Uﬁ)l,z +d(m, k)ul(jr_i,k

where §(n,i) = 1 for n =i and 6(n, i) = 0 for n # i. Note that the increments of the coordinates
dnm(to +0) — dpm(to) at the jump time do not depend on the history of the process before
time %y, as the random variables. ugz)(uﬁ)) are independent and equally distributed for fixed
type. Markov property follows from this.

Note however that this continuous time Markov process has singular transition probabilities
(due to partly deterministic movement). This fact however does not prevent us from using
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the techniques from [1| where random walks in Z} were considered. Absolute continuity of
the distributions of random variables ugz),uﬁ) garanties that the events when more than one
coordinate of D(t) become zero, have zero probability.

We call the process D(t) ergodic, if there exists a neighborhood A of zero, such that the mean
value E'7, of the first hitting time 7, of A from the point z is finite for any € D. In our context
we call the process D(t) transient if it goes to infinity with probability 1. Condition (2), which
excludes the set of parameters of zero measure, excludes null recurrent cases and complicated
behavior of considered random walk as well.

Any collision of particles of the typesi € I_, k € I, is called a collision of type (i, k). Denote

vin(T) = #{t : dix(t) = 0,t € [0, T]}

-that is the number of collisions of type (i, k) on the time interval [0, 7]. One can calculate the
asymptotics of these numbers due to the following lemma.

Lemma 1 If the process D(t) is ergodic, then the following positive limits exist a.s.

(T
—””’“; )>0, (i,k) el

)

= 7lim
and satisfy the following system of linear equations

o == Y G+ sm ki . (k) €1 (3)

(n,m)el_xI,

In the ergodic case the correspondence between boundary movement and random walks is
completely described by the following theorem.

Theorem 2 Two following two conditions are equivalent:
1) The process D(t) is ergodic; — 2) U(Li) >V and vg) <V

All other cases of boundary movement corresponds to non-ergodic random walks. To un-
derstand the corresponding random walk dynamics introduce a new family of processes.

Induced process Let |J_| + |J;| families of random variables be given
{Qﬁ,‘i), se R+}, (ieJ), {egj]j, se R+}, (ke J.). (4)

We assume that for any ¢ € [ the random variables {9(7) 5 € R+} are i.i.d., similarly for

EXAR

{9(;), s € R+}, and all families (4) are independent of each other.

Define some auxiliary random process £(t) = (€[,.(t), (i, k) € IT) with state space R and
left continuous trajectories, here Il = J_ x J, = {(i, k) : ...} C I_ x I :
1) if £7%(t) > 0 for any (i, k) € II, then
d _
ZEO =0 —u7 <0, V(ik) e, (5)
2) if at some time moment sy the coordinate (ig, ko) becomes zero, that is 5{01,,60(50) =0,
then the coordinates have jumps as follows:
grl;l,m(so + O) - fyl;{m(SO) = 6(”? 20)0(7) + 5(m7 kO)Q(Jr) \V/(TL, m) el (6)

80,20 80,k0”
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It is clear that £"(¢) is a Markov process. In R define the linear subspace D(RM) of
dimension |J_| 4 |J4| — 1, by the following system of equations

Zik + Znm = Zim + Zn,ks { 7é n, k 7é m.

In this system only (|J_| — 1)(|J+| — 1) equations are linearly independent. In fact, fix some
pair (i, ko) € II. As

Zn,m - Zio,m + Zn,ko - Zio,koa

then any variable can be expressed with |J_| + |J,| — 1 variables 2, k,, Zig.m and 2z, x,, 7 7 o,
m # k.

Note that if £'(0) € D(RM), then for any ¢ > 0 ¢"(t) € D(RIM).

Relation with the process D(t). Let II = I_ x I, and assume that 0&;) have the

same distributions as ug-;), and 95;2 - as uﬁ) Then it is easy to see that Markov processes

D(t) = (d;x(t), (i,k) € I_ x I,) and £/-*!+(¢) have the same transition kernels.

Let IT = J_ x J, € I_ x I;. Consider the restriction D| (t) = (d;x(t), (i,k) € II) of the
process D(t) = (d;ix(t), (i,k) € I_ x I) onII. Then this progess does not coincide with £(¢),
starting with £1(0) = D’H(O), but even will not be a Markov process. In fact D’H(t) has jumps

at time moments when one of the coordinates (i, k) € I_ x I, becomes zero. And £"(t) jumps
only when becomes zero one of the coordinates from II. However, if the initial point D(0)
is such that each d;;(0), (i,k) € I_ x I;\II is sufficiently large, then during some time the

processes D’ (t) and &"(t) coincide. Thus one can say that "(t) is the “projection” of D(t)
I

far away from the origin. This is quite similar to the notion of the induced process in [1].
Let A C I =1_xI,. The face of RY associated with A is defined as

B(A)={x € RY : z;;, >0, (i,k) € A, 2, =0, (i,k) € A} C RY

If A=), then B(A) = {0}. For shortness, instead of B(A) we will write A.

Consider the faces A such that A = J_ x Jowhere J_ C I_u J, C I,. The process &(t)
will be called an induced process, associated with A. Further on we shall use the notation
Dy (t) = (d2(t), (i, k) € A) instead of €M(t). The state space of this process is DN = D(RW),
where [A| = |J_| x |J].

Face A is called ergodic if the induced process D, (%) is ergodic.

Denote

v (T) = #{t: d}(t)=0,t€[0,T]}, (i,k)eA

Lemma 2 If the process D\ (t) is ergodic then the following a.e. limits exist and are positive
for all pairs (i, k) € A

A

vy (T
7 = lim 7”6( )
LI S

>0 (7)
They satisfy the following system of linear equations

o) —u = " (G i) + S (m, k) (k) € R (8)

(n,m)eA

Let A=J_xJ, = {z’l,_...,z'l} X {k1, .oy km }, where iy > ... >4y and ky < ... < ky,, and let A
be an ergodic face. Put V> =V (J_,J,). Then
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1) UZ-(I_) > VA and U](CZ) <V
2) The boundary velocity for the induced process equals (with the a.e. limit)

Note that VA =V for A = 0.

Induced vectors For any ergodic face A (A = J_x J,) we define the induced vector v* € RN
with the coordinates equal to

vf,\k — v,(f) +1(i € J,),ul(i)ﬂ-(Aﬁ) +1(k € J+)u,(€+)7r,(€A’+)

) %
where we introduce the following notation

7TZ-(A’7) = Z 7TZ~/}]€, 1€ J_; W,(CA’JF) = Z 7TZ~/}]€, ked,.

keJd ieJ_

By (8) we have v}, = 0 for (i,k) € A, that is the induced vector belongs to the face A.
The following lemma explains the meaning of the induced vector.

Lemma 3 1) The induced vector for the ergodic face A belongs to D N A and its coordinates
are given by

v = o w VA (k) e, i¢J, kel
v = oD —VE (k) ed, ied, k¢
vh, = o rol, (i,k)eA, i¢J., ke,

v;}k = 0, (i,k) € A

2) Let A be ergodic and D,(t) be the Markov process D(t) with initial point y, that is D(0) = y.
Then for any y € B(A) ut >0, so that y + vt € B(A), we have

DyN(tN) —y +vAt

a.e. as N — 0.

It follows from condition (2) that for each ergodic face A coordinates of the corresponding
induced vector v}, # 0 for all (i, k) € A.

Non-ergodic faces Let A be the face which is not ergodic (non-ergodic face). Ergodic face
Ay: Ay D A will be called outgoing for A, if le,i > 0 for (i, k) € Ay \ A.
Let £(A) be the set of outgoing faces for the non-ergodic face A.

Lemma 4 The set £(A) contains the minimal element Ay in the sense that for any Ay € E(A)
we have Ag DO A;.



Dynamical system For any ergodic face A we defined the induced vector v*, and for any
non-ergodic face A we defined the vector v, where A; is the minimal element of £(A). Thus,
we defined the vector field in D N Rf. Let Tz be the dynamical system corresponding to this
vector field.

We call the ergodic face A = £ final, if either £ = ) or all coordinates of the induced vector
v* are positive. The central statement is that the dynamical system hits the final face, stays
on it forever and goes along it to infinity.

The following theorem, together with theorem 2, is parallel to Theorem 1 and, in all 3 cases

of Theorem 1, they exhibit the properties of the corresponding random walks in the orthant.

Theorem 3

1. Assume
Uﬁj) >V

Then the process D(t) is transient and there exists a unique ergodic final face L1, such
that vf,i > 0 for (i, k) € L1. This face is

El(L,Kl) = {(Z,]{) D= 1, ...,L, k= Kl + 1, ,K}
2. Assume
v(;) <V

Then the process D(t) is transient and there exists a unique ergodic final face Lo, such
that vfﬁ > 0 for (i,k) € Ly. This face is

Eg(Ll,K) = {(Z,k’) i:L1+1,...,L, ]{Z:]_,,K}
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